Skip to main content
About the Institute
  • English
  • Français
  • Español
  • Russian
  • Portuguese

Breadcrumb

  1. Home
  2. Pediatrics
  3. A new generation of antibacterial agents? A plasmid capable of killing pathogenic bacteria
  • Our publications
    • News
    • Microbiota Mag
    • Thematic folders
    • Overviews - Microbiota Magazine
  • About the Institute
    • Partnerships
    • Press room
  • Congresses
    • Congress calendar
    • Congress reviews
  • Continuing Medical Education
    • Accrediting courses
    • Xpeer App
  • Useful documents
    • Infographics
    About the Institute

    Join the microbiota community

    • Facebook
    • Twitter
    • LinkedIn
    • YouTube

Lay public section

Find here your dedicated section
Gastroenterology
Gynecology
Pediatrics
Dermatology

Breadcrumb

  1. Home
  2. Pediatrics
  3. A new generation of antibacterial agents? A plasmid capable of killing pathogenic bacteria
Pediatrics

A new generation of antibacterial agents? A plasmid capable of killing pathogenic bacteria

Drug
Pediatrics Gastroenterology

For a few years, DNA-cutting molecular scissors have been tested to kill certain pathogenic bacteria. But there was no reliable and efficient way to reach a large population of target cells. It is now well underway.

Gastroenterology
Gynecology
Pediatrics
Dermatology
  • Our publications
    • News
    • Microbiota Mag
    • Thematic folders
    • Overviews - Microbiota Magazine
  • About the Institute
    • Partnerships
    • Press room
  • Congresses
    • Congress calendar
    • Congress reviews
  • Continuing Medical Education
    • Accrediting courses
    • Xpeer App
  • Useful documents
    • Infographics
    About the Institute

    Join the microbiota community

    • Facebook
    • Twitter
    • LinkedIn
    • YouTube

Lay public section

Find here your dedicated section

Sources

This article is based on scientific information

Sharing is caring

Your colleagues might be interested in this topic. Why not share it?

  • Facebook
  • Twitter
  • LinkedIn
  • Mail

About this article

Created 21 January 2020
Updated 30 March 2022

 

How can we specifically target pathogenic bacteria without creating resistance or inducing collateral damages to other members of the microbial community, and with a simple yet effective tool. A team from London may have found a solution, based on CRISPR-Cas9, i.e. “molecular scissors” that can implement gene corrections: a guide RNA recognizes a DNA sequence (called CRISPR) to which Cas9 nuclease binds, and cuts the target sequence. And we know that any cut into circular bacterial DNA prevents its replication and induces cell’s death.

A plasmid vector

The idea behind this study is the following: instead of inserting Cas9 into the bacterial DNA, researchers inserted it into a plasmid, a small DNA component present in addition to the bacterial genome. What is the advantage? Bacteria spread these plasmids through a process called (sidenote: Conjugation The donor bacterium binds to the recipient, transfers it a strand of the plasmid DNA which will later be transformed again by the recipient into a double-stranded plasmid ) , even between different species. But until now, studies were restricted by the low frequency of these plasmid transfers. This deficiency was overcome by the development of a plasmid containing not only Cas9 nuclease but also any equipment necessary to the conjugation process. Thanks to the successive conjugations between bacteria (the recipient becoming the donor, and so on), this new plasmid spreads very quickly, from an E. coli (donor) population to a nearly 100% Salmonella enterica population, considering that the closer the contact between cells (for instance in a biofilm), the greater the conjugation frequency. It should be noted that this propagation is possible because the expression of Cas9 is controlled: arabinose is required for nuclease expression and thus for bacterial killing. In the absence of arabinose, the plasmid is only able to spread.

Target: non-essential genes

Plasmid efficacy to kill target bacteria still had to be assessed, by varying one parameter: the gene cut by nuclease. The researchers thus tested 65 fragments of guide RNA, each recognizing a different gene of the bacterial DNA of S. enterica–some essential and some non-essential. By using E. coli again as initial donor of the plasmid, the team found that S. enterica mortality rate varied from 1 to 100%, depending on the target gene. Although questions remain to explain these differences, targeting essential genes seems less efficient: this gives rise to the insertion of DNA fragments into the plasmid, which then loses its ability to kill bacteria. This does not happen with non-essential genes.

A solution to reach biofilms?

Even though the model is only based on 2 tested species, the plasmid could theoretically be transferred to a complex microbial community: the conjugation could therefore be no longer the limit. The researchers must now focus on the plasmid efficacy and parameters impacting its activity. This process could have a wide range of applications, including the penetration of biofilms which are difficult to reach through other vectors: a native bacterium of the biofilm could be the initial donor, thus allowing the plasmid to spread very quickly and destroy target bacteria, even the most resistant to antibiotics.

 

Sources

Hamilton TA, Pellegrino GM, Therrien JA, et al. Efficient inter-species conjugative transfer of a CRISPR nuclease for targeted bacterial killing. Nat Commun. 2019 Oct 4;10(1):4544.

 

Tags
Child health Dysbiosis Plasmid Bacteria Pathogen Biofilm Antibiotic resistance

en_view en_sources

    Created 21 January 2020
    Updated 30 March 2022

    About this article

    To know more about this topic.

    Main topic

    Drug

    Medical practice

    Pediatrics Gastroenterology

    Content type

    News

    Continue reading

    News
    20.03.2023

    The role of Bifidobacteria in irritable bowel syndrome (IBS)

    Read the article
    14.03.2023

    Positive impact of running on gut microbiota and adolescent depression

    Read the article
    09.03.2023

    Each subtype of Irritable Bowel Syndrome (IBS) has its own dysbiosis

    Read the article

    Xpeer course: Detection, Prevention and Treatment of Gut Microbiome Dysbiosis

    Find out more
    Parkinson : le microbiote intestinal, chef d’orchestre des mécanismes pathogéniques ?
    27.02.2023

    Does the gut microbiota orchestrate pathogenic mechanisms in Parkinson’s disease?

    Read the article

    Your IBS Diagnosis Check List

    How many patients suffering from gut disorder do you see per week? How many are diagnosed with Irritable Bo...

    Find out more

    Impact of beer and non alcoholic consumption on the gut microbiota

    By Pr. Bernd SchnablDivision of Gastroenterology, San Diego Digestive Diseases Research Center (SDDRC), UC ...

    Find out more
    Everything you need to know about Microbiota & Immunity
    15.09.2022

    Everything you need to know about Microbiota & Immunity

    Read the article
    What's worth reading about microbiota
    Follow us on Twitter
    Read our thematic folder
    The Janus face of Antibiotics: Life Savers & Microbiota Disrupters
    NL13_cover
    Check out latest newsletter
    IBS, Microbiota & Covid-19
    • Our publications
      • News
      • Microbiota Mag
      • Thematic folders
      • Overviews - Microbiota Magazine
    • About the Institute
      • Partnerships
      • Press room
    • Congresses
      • Congress calendar
      • Congress reviews
    • Continuing Medical Education
      • Accrediting courses
      • Xpeer App
    • Useful documents
      • Infographics
      About the Institute

      Join the microbiota community

      • Facebook
      • Twitter
      • LinkedIn
      • YouTube

    Lay public section

    Find here your dedicated section
    Gastroenterology
    Gynecology
    Pediatrics
    Dermatology
    • English
    • Français
    • Español
    • Russian
    • Portuguese

    Browse the site

    • Our publications
      • News
      • Microbiota Mag
      • Thematic folders
      • Overviews - Microbiota Magazine
    • About the Institute
      • Partnerships
      • Press room
    • Congresses
      • Congress calendar
      • Congress reviews
    • Continuing Medical Education
      • Accrediting courses
      • Xpeer App
    • Useful documents
      • Infographics
      About the Institute

      Join the microbiota community

      • Facebook
      • Twitter
      • LinkedIn
      • YouTube

    Lay public section

    Find here your dedicated section

    Discover

    Gastroenterology
    Gynecology
    Pediatrics
    Dermatology

    Join the microbiota community

    • Facebook
    • Twitter
    • LinkedIn
    • YouTube

    Lay public section

    Find here your dedicated section

    Redirection

    You are about to be redirected and leave our website

    • Be redirected
    • Stay on the Biocodex Microbiota Institute's website

    Stay with us !

    Join the Microbiota Community of HCPs and researchers and receive “Microbiota Digest” and "Microbiota Mag" to stay up to date on the latest news about microbiota.

    * Mandatory Fields

    BMI 20-35

    Explore

    20.03.2023

    The role of Bifidobacteria in irritable bowel syndrome (IBS)

    Read the article
    14.03.2023

    Positive impact of running on gut microbiota and adolescent depression

    Read the article
    09.03.2023

    Each subtype of Irritable Bowel Syndrome (IBS) has its own dysbiosis

    Read the article

    Stay updated

    Join the Microbiota Community of HCPs and researchers and receive “Microbiota Digest” and "Microbiota Mag" to stay up to date on the latest news about microbiota.

    * Mandatory Fields

    BMI 20-35

    • Our publications
      • News
      • Microbiota Mag
      • Thematic folders
      • Overviews - Microbiota Magazine
    • About the Institute
      • Partnerships
      • Press room
    • Congresses
      • Congress calendar
      • Congress reviews
    • Continuing Medical Education
      • Accrediting courses
      • Xpeer App
    • Useful documents
      • Infographics
      About the Institute

      Join the microbiota community

      • Facebook
      • Twitter
      • LinkedIn
      • YouTube

    Lay public section

    Find here your dedicated section

    Discover

    Gastroenterology
    Gynecology
    Pediatrics
    Dermatology

    Lay public section

    Find here your dedicated section

    Join the microbiota community

    • Facebook
    • Twitter
    • LinkedIn
    • YouTube

    © 2022 Biocodex. All rights reserved.

    • Cookies Policy
    • Data protection policy
    • GTU
    • Sitemap
    • Cookies settings
    Biocodex logo