Skip to main content
About the Institute
  • English
  • Français
  • Español
  • Russian

Breadcrumb

  1. Home
  2. Microbiota 11 - December 2020
  3. Cholesterol metabolism by uncultured human gut bacteria influences host cholesterol level
  • Our publications
    • News
    • Microbiota Mag
    • Thematic folders
    • Overviews - Microbiota Magazine
  • About the Institute
    • Partnerships
    • Press room
  • Congresses
    • Congress calendar
    • Congress reviews
  • Continuing Medical Education
    • Accrediting courses
    • Xpeer App
  • Useful documents
    • Infographics
    About the Institute

    Join the microbiota community

    • Facebook
    • Twitter
    • LinkedIn
    • YouTube

Lay public section

Find here your dedicated section
Gastroenterology
Gynecology
Pediatrics
Dermatology

Breadcrumb

  1. Home
  2. Microbiota 11 - December 2020
  3. Cholesterol metabolism by uncultured human gut bacteria influences host cholesterol level
Gastroenterology

Cholesterol metabolism by uncultured human gut bacteria influences host cholesterol level

Cholesterol

Commented articles - Adults' section

By Pr. Harry Sokol
Gastroenterology and Nutrition Department, Saint-Antoine Hospital, Paris, France

 

Gastroenterology
Gynecology
Pediatrics
Dermatology
  • Our publications
    • News
    • Microbiota Mag
    • Thematic folders
    • Overviews - Microbiota Magazine
  • About the Institute
    • Partnerships
    • Press room
  • Congresses
    • Congress calendar
    • Congress reviews
  • Continuing Medical Education
    • Accrediting courses
    • Xpeer App
  • Useful documents
    • Infographics
    About the Institute

    Join the microbiota community

    • Facebook
    • Twitter
    • LinkedIn
    • YouTube

Lay public section

Find here your dedicated section

Sources

This article is based on scientific information

Sharing is caring

Your colleagues might be interested in this topic. Why not share it?

  • Facebook
  • Twitter
  • LinkedIn
  • Mail

Sections

Article2_Bandeau-Microbiota_NL11_FR.jpg

About this article

Created 24 August 2021
Updated 06 January 2022

Comments on the original article of Kenny et al. (Cell Host & Microbe 2020)

The human microbiome possesses extensive metabolic capabilities but our understanding of the mechanisms linking gut microbes to human metabolism remains limited. In this article, the authors focused on the conversion of cholesterol to the poorly absorbed sterol coprostanol by the gut microbiota to develop a framework for the identification of functional enzymes and microbes. By integrating paired metagenomics and metabolomics data from e xisting cohorts with biochemical knowledge and experimentation, the authors predicted and validated a group of microbial cholesterol dehydrogenases that contribute to coprostanol formation. These enzymes are encoded by ismA genes in a group of uncultured microbes, which are prevalent in geographically diverse human cohorts. Individuals harbouring coprostanol-forming microbes have significantly lower faecal cholesterol levels and lower total serum cholesterol with effects comparable to those attributed to variations in lipid homoeostasis genes. Thus, cholesterol metabolism by these microbes may play important roles in reducing intestinal and serum cholesterol concentrations, directly impacting human health. [1]

What do we already know about this subject?

Cholesterol is a key biological molecule that functions as a structural component of all animal cell membranes and is a pre-cursor of steroid hormones, vitamin D, and bile acids. Two main sources of cholesterol are thought to influence concentrations of this metabolite in serum: endogenous cholesterol synthesised in the liver and exogenous cholesterol derived from dietary components of animal origin (Figure 1). The cholesterol synthesised in hepatocytes is transported to the gallbladder and is then secreted into the small intestine along with other bile salts. In the intestine, biliary cholesterol (~1–2 g/day) mixes with dietary cholesterol (~0.2–0.4 g/day in the average American diet), and both sources are eventually transported into enterocytes for packaging into lipoprotein particles and secretion into the plasma. Hypercholesterolaemia is a risk factor for cardiovascular disease (CVD), which is the cause of one-fourth of all deaths in industrialised countries.

Reducing cholesterol transport in the intestine is a clinically validated strategy for lowering serum cholesterol levels. A range of gut microbes metabolise and modify dietary and host-derived molecules in the small intestine. Because both sources of cholesterol pass through this environment, the gut microbiota may influence serum cholesterol levels. Indeed, microbiota transfer from human donors with elevated serum cholesterol levels can impart this hypercholesterolaemia phenotype to mice. [2, 3] Other studies have reported that administering specific bacterial species can have cholesterol-lowering effects. [4] However, the precise mechanisms underlying these observations are currently unknown. The gut microbiota may exert cholesterol-lowering effects by metabolising intestinal cholesterol to coprostanol (Figure 1), which would reduce the amount of cholesterol absorbed from the intestine.

This microbiota-dependent transformation has been known to occur in humans since the early 1900s. Several coprostanol-generating gut bacteria with similar physical and biochemical characteristics have been reported from a variety of different sources including rats, baboons, and humans. However, most of these strains are not currently available and were never sequenced. Early work showed that coprostanol formation by this group of gut bacteria proceeds through an indirect reduction pathway involving the initial oxidation of cholesterol (1) to cholestenone (2), followed by reduction of the D4,5 double bond to form coprostanone (3), and subsequent re-reduction of ketone to generate coprostanol (4) (Figure 1). The bacterial enzymes responsible for this metabolism were never identified. More recently, other reports have implicated additional phylogenetically diverse gut bacteria in coprostanol formation. [5] While efforts to elucidate how gut microbial metabolism of cholesterol affects human serum cholesterol levels span over 100 years, mechanistic support for this connection has remained elusive due to a limited understanding of the gut microbes, genes, and enzymes responsible for coprostanol formation.

Image

Key points

  • Some bacteria found in the human intestinal microbiota possess enzymes belonging to the ismA family capable of breaking down cholesterol.

  • The presence of ismA+ species in gut microbiota is associated with decreased faecal and serum cholesterol in humans.

  • The effect of ismA+ species on serum cholesterol is on par with human genetics.

What are the main insights from this study?

The authors used a multi-disciplinary strategy to discover gut bacterial enzymes. This strategy, based on correlations between metagenomics and metabolomics data from existing human cohorts, identified and characterised an extensive family of cholesterol dehydrogenase enzymes from a clade of uncultured intestinal bacteria implicated in the metabolism of cholesterol to coprostanol. Firstly, the enzyme responsible for the first step in cholesterol transformation, called ismA, was identified in Eubacterium coprostanoligenes, a bacteria already known for this function. Analysis of sequencing data from human cohorts then identified homologous enzymes in a group of uncultured anaerobic bacteria.

The presence of these ismA genes in the microbiome was associated with the presence of coprostanol in stools and lower faecal cholesterol levels. Finally, to demonstrate the potential for these cholesterol- metabolising bacteria to influence human health, the authors showed that presence of ismA genes in human metagenomes is associated with a decrease in total cholesterol concentrations in serum that is on par with the effects observed from variants in human genes involved in lipid homoeostasis

What are the consequences in practice?

Overall, these findings confirm the role of gut-bacterial metabolism in modulating host cholesterol levels in the intestine and also, more importantly, on a systemic level. This work paves the way for the use of the gut microbiota as a predictive biomarker of high cholesterol and establishes the foundations for microbiota-targeted therapeutic interventions.

Conclusion

This study highlights the role of the gut microbiota in breaking down cholesterol with an effect on serum cholesterol levels. Gut microbiota could soon become the target of cholesterol lowering therapies.

Sources

1 Kenny DJ, Plichta DR, Shungin D, et al. Cholesterol metabolism by uncultured human gut bacteria influences host cholesterol level. Cell Host Microbe 2020 ; 28 : 245-57.

2 Le Roy T, Lécuyer E, Chassaing B, et al. The intestinal microbiota regulates host cholesterol homeostasis. BMC Biol 2019 ; 17 : 94.

3 Rothschild D, Weissbrod O, Barkan E, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 2018 ; 555 : 210-5.

4 Parks DH, Imelfort M, Skennerton CT, et al: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015 ; 25 : 1043-55.

5 Gerard P, Lepercq P, Leclerc M, et al. Bacteroides sp. strain D8, the first cholesterol-reducing bacterium isolated from human feces. Appl Environ Microbiol 2007 ; 73 : 5742-9.

Tags
Gastroenterology

en_view en_sources

    Focus
    Microbiota 11 - December 2020
    • Overview
      • The gut microbiota and drug metabolism
      • The gut-lung axis during viral respiratory infections
    • Commented articles
      • Cholesterol metabolism by uncultured human gut bacteria influences host cholesterol level
      • Gut mucosal and faeca l microbiota profiling combined to intestinal immune system in neonate s affected by intestinal ischemic injuries
    • Congress review
      • EJFHOD 2020
    • Press review
      • Vaginal Microbiota
      • Skin Microbiota
      • Gut Microbiota
    Created 24 August 2021
    Updated 06 January 2022

    About this article

    To know more about this topic.

    Main topic

    Cholesterol

    Content type

    Commented article
    The gut-lung axis during viral respiratory infections
    Gut mucosal and faeca l microbiota profiling combined to intestinal immune system in neonate s affected by intestinal ischemic injuries
    Focus

    Microbiota 11 - December 2020

    Overview

    The gut microbiota and drug metabolism The gut-lung axis during viral respiratory infections

    Commented articles

    Cholesterol metabolism by uncultured human gut bacteria influences host cholesterol level Gut mucosal and faeca l microbiota profiling combined to intestinal immune system in neonate s affected by intestinal ischemic injuries

    Congress review

    EJFHOD 2020

    Press review

    Vaginal Microbiota Skin Microbiota Gut Microbiota
    Gastroenterology
    20.03.2023

    The role of Bifidobacteria in irritable bowel syndrome (IBS)

    Read the article
    14.03.2023

    Positive impact of running on gut microbiota and adolescent depression

    Read the article
    09.03.2023

    Each subtype of Irritable Bowel Syndrome (IBS) has its own dysbiosis

    Read the article
    Parkinson : le microbiote intestinal, chef d’orchestre des mécanismes pathogéniques ?
    27.02.2023

    Does the gut microbiota orchestrate pathogenic mechanisms in Parkinson’s disease?

    Read the article

    Your IBS Diagnosis Check List

    How many patients suffering from gut disorder do you see per week? How many are diagnosed with Irritable Bo...

    Find out more

    Human milk nutrient fortifiers alter the developing gastrointestinal microbiota of very-low-birth-weight infants

    Commented article - Children's section By Pr. Emmanuel M...

    Find out more

    Impact of beer and non alcoholic consumption on the gut microbiota

    By Pr. Bernd SchnablDivision of Gastroenterology, San Diego Digestive Diseases Research Center (SDDRC), UC ...

    Find out more
    Everything you need to know about Microbiota & Immunity
    15.09.2022

    Everything you need to know about Microbiota & Immunity

    Read the article
    What's worth reading about microbiota
    Follow us on Twitter
    Read our thematic folder
    The Janus face of Antibiotics: Life Savers & Microbiota Disrupters
    NL13_cover
    Check out latest newsletter
    IBS, Microbiota & Covid-19
    • Our publications
      • News
      • Microbiota Mag
      • Thematic folders
      • Overviews - Microbiota Magazine
    • About the Institute
      • Partnerships
      • Press room
    • Congresses
      • Congress calendar
      • Congress reviews
    • Continuing Medical Education
      • Accrediting courses
      • Xpeer App
    • Useful documents
      • Infographics
      About the Institute

      Join the microbiota community

      • Facebook
      • Twitter
      • LinkedIn
      • YouTube

    Lay public section

    Find here your dedicated section
    Gastroenterology
    Gynecology
    Pediatrics
    Dermatology
    • English
    • Français
    • Español
    • Russian

    Browse the site

    • Our publications
      • News
      • Microbiota Mag
      • Thematic folders
      • Overviews - Microbiota Magazine
    • About the Institute
      • Partnerships
      • Press room
    • Congresses
      • Congress calendar
      • Congress reviews
    • Continuing Medical Education
      • Accrediting courses
      • Xpeer App
    • Useful documents
      • Infographics
      About the Institute

      Join the microbiota community

      • Facebook
      • Twitter
      • LinkedIn
      • YouTube

    Lay public section

    Find here your dedicated section

    Discover

    Gastroenterology
    Gynecology
    Pediatrics
    Dermatology

    Join the microbiota community

    • Facebook
    • Twitter
    • LinkedIn
    • YouTube

    Lay public section

    Find here your dedicated section

    Redirection

    You are about to be redirected and leave our website

    • Be redirected
    • Stay on the Biocodex Microbiota Institute's website

    Stay with us !

    Join the Microbiota Community of HCPs and researchers and receive “Microbiota Digest” and "Microbiota Mag" to stay up to date on the latest news about microbiota.

    * Mandatory Fields

    BMI 20-35

    Explore

    20.03.2023

    The role of Bifidobacteria in irritable bowel syndrome (IBS)

    Read the article
    14.03.2023

    Positive impact of running on gut microbiota and adolescent depression

    Read the article
    09.03.2023

    Each subtype of Irritable Bowel Syndrome (IBS) has its own dysbiosis

    Read the article

    Stay updated

    Join the Microbiota Community of HCPs and researchers and receive “Microbiota Digest” and "Microbiota Mag" to stay up to date on the latest news about microbiota.

    * Mandatory Fields

    BMI 20-35

    • Our publications
      • News
      • Microbiota Mag
      • Thematic folders
      • Overviews - Microbiota Magazine
    • About the Institute
      • Partnerships
      • Press room
    • Congresses
      • Congress calendar
      • Congress reviews
    • Continuing Medical Education
      • Accrediting courses
      • Xpeer App
    • Useful documents
      • Infographics
      About the Institute

      Join the microbiota community

      • Facebook
      • Twitter
      • LinkedIn
      • YouTube

    Lay public section

    Find here your dedicated section

    Discover

    Gastroenterology
    Gynecology
    Pediatrics
    Dermatology

    Lay public section

    Find here your dedicated section

    Join the microbiota community

    • Facebook
    • Twitter
    • LinkedIn
    • YouTube

    © 2022 Biocodex. All rights reserved.

    • Cookies Policy
    • Data protection policy
    • GTU
    • Sitemap
    • Cookies settings
    Biocodex logo